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Abstract

In the present paper the dynamic stability of circular cylindrical shells subjected to static and dynamic axial loads is

investigated. Both Donnell’s nonlinear shallow shell and Sanders–Koiter shell theories have been applied to model finite-

amplitude static and dynamic deformations. Results are compared in order to evaluate the accuracy of these theories in

predicting instability onset and post-critical nonlinear response. The effect of a contained fluid on the stability and the

post-critical behaviour is analyzed in detail. Geometric imperfections are considered and their influence on the dynamic

instability and post-critical behaviour is investigated. Chaotic dynamics of pre-compressed shells is investigated by means

of nonlinear time-series techniques, extracting correlation dimension and Lyapunov exponents.

r 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The stability of shells has been deeply investigated in the past. In fact, these structural elements play an
important role in many fields, such as: nuclear, aerospace, civil and mechanical engineering. The complexity in
finding accurate models useful for practical designers, gave rise to an enormous scientific production, focused
in particular on static buckling. Nevertheless, many authors consider that the general problem of shell stability
is still open.

An interesting review on shell stability is due to Babcock [1]. After a certain criticism about the number of
papers published on the subject, about 50,000!, he focused the attention on the most important topics on this
field: post-buckling and imperfection sensitivity; dynamic buckling; plastic buckling; experiments. It is now
clear that the most important types of imperfections are the geometrical ones; unfortunately, it is not simple to
relate them to the knockdown factor. The most of the literature cited in Ref. [1] about dynamic buckling is
concerned with dynamic step-loading, i.e. transient analyses.

Calladine [2], in his review on imperfection sensitivity, confirmed that the buckling of thin-walled shells has
been still ‘‘imperfectly’’ understood; however, he claimed that ‘‘there are strong grounds for supposing that
locked-in initial stresses on account of imperfect initial geometry and the static indeterminacy of boundary
conditions of real shells have a pronounced effect on the buckling performance’’. He showed several
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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interesting approximate formulas for actual buckling prediction; he discussed the problem of coincident
buckling modes and concluded that a great attention should be addressed to initial geometric imperfections as
well as to locked-in stresses, due for example to fixed boundaries.

In a more recent review on shell’s buckling [3], the previous considerations were confirmed, i.e. the field of
shell’s stability still presents several problems to be investigated.

Even though the stability of shells subjected to axial periodic loads received less attention with respect to the
static buckling, the literature is rich of interesting papers; many of them are from Eastern Europe or former
Soviet Union, as shown in the extensive review by Amabili and Paı̈doussis on nonlinear vibrations and
dynamics of shells [4].

One of the first studies on parametric instability of cylindrical shells is due to Yao [5], who reduced
parametric oscillations (by using Donnell’s nonlinear shallow shell theory, axial dynamic loads do not give
direct excitation to the equation of motion but their contribution appears as parametric excitation) of circular
cylindrical shells to the well-known Mathieu equation, and studied the stability bounds. Vijayaragham and
Evan-Iwanowski [6] studied theoretically and experimentally the dynamic instability of clamped-free
seismically excited cylindrical shells.

An interesting experimental study on parametric resonances of cylindrical shells can be found in Ref. [7],
where the author observed a particularly violent instability; it takes place suddenly (the authors defined it a
‘‘bang’’) when a transition between stable to unstable regions occurs (or between two different instability
regions involving different modes). Unfortunately, authors did not explain the nature of such ‘‘bang’’ that
often damaged the shell.

Donnell’s nonlinear shallow shell equations were used in Ref. [8] to study parametric oscillations of circular
cylindrical shells. In that paper it was pointed out that: using membrane approximation, to evaluate in-plane
stresses, can lead to large errors when axisymmetric modes are close to the resonance.

Kubenko and Koval’chuk [9] published an interesting review on nonlinear problems of shells, where
interesting results were reported about parametric vibrations and in particular: type of nonlinearity;
imperfections, experiments, damping models. They in particular pointed out the limitation of analytical
studies concerning with reduced order models.

Pellicano et al. [10] studied nonlinear oscillations and dynamical instability of simply supported cylindrical
shells, under the action of longitudinal dynamic force, with fluid–structure interaction; Donnell’s nonlinear
shallow shell theory was applied and a multimode approach was developed.

Gonc-alves and Del Prado [11] analyzed the dynamic buckling of a perfect circular cylindrical shell under
axial static and dynamic loads. Donnell’s nonlinear shallow shell theory was used and the membrane theory
was considered to evaluate the in-plane stresses. The partial differential operator was discretized through the
Galerkin technique, using a relatively large modal expansion. However, no companion mode participation
was considered and the boundary conditions were dropped by assuming an infinitely long shell. Escape from
potential well was analyzed in detail, and a correlation of this phenomenon with the parametric resonance was
given. Popov [12] used a continuation technique to study nonlinear oscillations and parametric instabilities of
an infinitely long cylindrical shell.

An analytical simplified approach was developed by Jansen [13] in order to simulate dynamic step and
periodic axial loads acting on isotropic and anisotropic shells, showing that simple periodic responses can be
simulated through low dimensional models. The effect of in-plane inertia was included in the Donnell-type
equations used in such a paper: it was found that neglecting in-plane inertia gives rise to a moderate
underestimate of the instability region.

In Ref. [14] a multimode approach was developed to analyze the correlation of parametric instability with
shell collapse, considering the geometric imperfections.

In the present paper, dynamic instability and post-critical response of circular cylindrical shells under the
action of axial static and periodic forces are investigated. Geometric imperfections and the presence of a
contained liquid are considered.

Sanders–Koiter and Donnell’s nonlinear shallow shell theories are used for structural modelling; potential
flow theory is applied for fluid–structure interaction. Multi-mode expansions of the displacement fields of the
shell are developed. Lagrange equations (for the Sanders–Koiter theory) and Galerkin (for the Donnell’s
nonlinear shallow shell theory) approach are applied in order to reduce partial differential equations (PDE) to
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ordinary differential equations (ODE). Convergence tests are carried out in order to assure a suitable accuracy of
the results. Comparisons between the two shell theories are performed in order to evaluate the accuracy of the
Donnell’s nonlinear shallow shell theory. The effect of imperfections and the presence of fluid on the dynamic
behaviour of the shell are numerically investigated; in particular, the effect on the instability onset is studied.

In order to obtain a complete dynamic scenario, numerical analyses are carried out by means of
continuation techniques (AUTO 97 [15]) and direct simulations, obtaining: static and periodic responses with
stability analysis and bifurcations; bifurcation diagrams; Poincaré maps; time histories; frequency spectra.

By taking advantage of nonlinear time series techniques [16], Lyapunov exponents, Kaplan–Yorke and
Correlation dimensions have been evaluated from direct simulation, in order to reach a deep understanding of
the complex dynamics.

2. Equations of motion and discretization: Sanders–Koiter theory

In order to take advantage from the axial symmetry of circular cylindrical shells a cylindrical coordinate
system (O; x, r, y), Fig. 1, is considered. The origin O is located at the centre of one end of the shell. The in-
plane and radial displacement fields of the middle shell surface are denoted by u(x, y, t), v(x, y, t) and w(x, y, t),
in the axial, circumferential and radial directions, respectively; w is taken positive outwards.

Radial initial imperfections, given by the displacement field w0(x, y), are considered.

2.1. Sanders– Koiter theory: strain energy

The Sanders–Koiter theory is based on Love’s first approximation: (i) h� R, where h and R are the shell
thickness and radius, respectively; (ii) strains are small; (iii) transverse normal stress is small; and (iv) the
normal to the undeformed middle surface remains straight and normal to the middle surface after deformation
and undergoes no thickness stretching (Kirchhoff–Love kinematic hypothesis) [17,18]; (v) rotary inertia and
shear deformations are neglected. Strain components ex, ey and gxy at an arbitrary point of the shell are related
to the middle surface strains ex;0, ey;0 and gxy;0 and to the changes in the curvature and torsion of the middle
surface kx, ky and kxy by the following three relationships [17]

ex ¼ ex;0 þ zkx, (1a)

ey ¼ ey;0 þ zky, (1b)

gxy ¼ gxy;0 þ zkxy, (1c)

where z is the distance of the arbitrary point of the shell from the middle surface (see Fig. 1(b)).
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Fig. 1. Circular cylindrical shell: coordinate system and dimensions. (a) Complete shell; (b) cross-section of the shell surface.
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According to the Sanders–Koiter theory, the middle surface strain–displacement relationships, changes in
the curvature and torsion are given by [17]
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The elastic strain energy US of a circular cylindrical shell, neglecting sz as stated by Love’s first
approximation, is given by [18]

US ¼
1

2

Z 2p

0

Z L

0

Z h=2

�h=2
sx ex þ sy ey þ txy gxy

� �
dx R ð1þ z=RÞ dy dz, (3)

where L is the shell length and the stresses sx, sy and txy are related to the strain for homogeneous and
isotropic material (sz ¼ 0, case of plane stress) by [18]

sx ¼
E

1� n2
ðex þ neyÞ, (4a)

sy ¼
E

1� n2
ðey þ nexÞ, (4b)

txy ¼
E

2ð1þ nÞ
gxy, (4c)

where E is the Young modulus and n is the Poisson ratio.
Using Eqs. (1,3,4), the following expression is obtained
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where O(h4) is a higher-order term in h according to the Sanders–Koiter theories.
In Eq. (5), the first term is the membrane (also referred to as stretching) energy and the second one is the

bending energy.
The kinetic energy TS of a circular cylindrical shell (rotary inertia is neglected) is given by

TS ¼
1

2
rSh

Z 2p

0

Z L

0

ð _u2 þ _v2 þ _w2Þ dxR dy, (6)

where rS is the mass density of the shell. In Eq. (6) the overdot denotes a time derivative.
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The virtual work W done by the external forces is written as

W ¼

Z 2p

0

Z L

0

ðqxuþ qyvþ qrwÞ dx R dy, (7)

where qx, qy and qr are the distributed forces per unit area acting in axial, circumferential and radial directions,
respectively.

The following boundary conditions are imposed at the shell ends, x ¼ 0; L:

w ¼ w0 ¼ 0, (8a)

Mx ¼ 0, (8b)

q2w0=qx2 ¼ 0, (8c)

Nx ¼
~P

2pR
, (8d)

v ¼ 0, (8e)

where Mx is the bending moment per unit length and Nx is the axial force per unit length, ~P is the external
axial load; moreover, u, v and w must be continuous in y.

Note that the boundary condition (8d) will be relaxed and substituted with Nx ¼ 0 in the following; because
the effect of axial loads will be included in the Lagrangian equations by means of their virtual work.
Therefore, boundary conditions for a classical simply supported shell are assumed.

2.2. Sanders– Koiter theory: modal expansion

In order to reduce the system to finite dimensions, i.e. to transform the initial PDE system into a set of
ODE, the middle surface displacements u, v and w are expanded by using trial functions. In the present work u,
v and w are expanded by using the eigenmodes of the simply supported, empty shell (which are unchanged for
the completely filled shell with open ends). In the past this kind of expansion showed good convergence
properties when the linear modes are carefully chosen: one has to select all modes that can undergo to a linear,
parametric or nonlinear resonance, then further modes driven by the nonlinear coupling should be added up
to convergence.

The expansion used in the present work is the following:

uðx; y; tÞ ¼
XMu;1

m¼1

XNu

j¼1

½um; j;cðtÞ cosð jyÞ þ um; j;sðtÞ sinð jyÞ� cosðlmxÞ þ
XMu;2

m¼1

um;0ðtÞ cosðlmxÞ, (9a)

vðx; y; tÞ ¼
XMv;1

m¼1

XNv

j¼1

½vm; j;cðtÞ sinð jyÞ þ vm;j;sðtÞ cosð jyÞ� sinðlmxÞ þ
XMv;2

m¼1

vm;0ðtÞ sinðlmxÞ, (9b)

wðx; y; tÞ ¼
XMw;1

m¼1

XNw

j¼1

½wm; j;cðtÞ cosð jyÞ þ wm;j;sðtÞ sinð jyÞ� sinðlmxÞ þ
XMw;2

m¼1

wm;0ðtÞ sinðlmxÞ, (9c)

where j is the number of circumferential waves, m is the number of longitudinal half-waves, lm ¼ mp=L and t

is the time; um,j(t), vm,j(t) and wm,j(t) are the generalized coordinates that are unknown functions of t; the
additional subscript c or s indicates if the generalized coordinate is associated to symmetric and anti-
symmetric mode shapes in y (no additional subscript is used for axisymmetric terms). The integers Nu, Nv, Nw,
Mu,1, Mu,2, Mv,1, Mv,2, Mw,1 and Mw,2 must be selected with care in order to obtain the required accuracy and
acceptable dimension of the nonlinear problem.

The excitation will be set in the neighbourhood of principal parametric resonance of mode with m ¼ 1
longitudinal half-wave and n circumferential waves, indicated as resonant mode (m, n) for simplicity. It is
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observed, for symmetry reasons, that the nonlinear interaction among linear modes of the chosen basis
includes: asymmetric modes (n40) having a given n value (e.g. the resonant mode), asymmetric modes having
a multiple of this value of circumferential waves (k� n, where k is an integer), and axisymmetric modes
(n ¼ 0); asymmetric modes with different numbers of circumferential waves, that do not satisfy the
relationship k � n, have interaction only if their natural frequencies are very close to ratios 1:1, 1:2, 1:3 or
other combinations with the frequency of the resonant mode. Only modes with an odd m value of longitudinal
half-waves can be considered for symmetry reasons [19,20] (if geometric imperfections with an even m value
are not introduced). In particular, asymmetric modes having up to three longitudinal half-waves (M1 ¼ 3,
only odd m values) and modes having n, 2� n, and 3� n circumferential waves have been considered in the
numerical calculations. For axisymmetric modes, up to M2 ¼ 9 has been used (only odd m values).

2.3. Sanders– Koiter theory: geometric imperfections

Initial geometric imperfections of the circular cylindrical shell are considered only in radial direction. They
are associated with zero initial stress. The radial imperfection w0 is expanded in the same form of w, i.e. in a
double Fourier series satisfying the boundary conditions (8a,c) at the shell edges

w0ðx; yÞ ¼
X~M1

m¼1

X~N
n¼1

wð0Þm;n;c cosðnyÞ þ wð0Þm;n;s sinðnyÞ
h i

sin lmxð Þ þ
X~M1

m¼1

w
ð0Þ
m;0 sinðlmxÞ, (10)

where wð0Þm;n;c, wð0Þm;n;s and w
ð0Þ
m;0 are the modal amplitudes of imperfections; ~N, ~M1 and ~M2 are integers indicating

the number of terms in the expansion.

2.4. Sanders– Koiter theory: boundary conditions

Eqs. (8) give the boundary conditions for a simply supported shell. Eqs. (8a,c,e) are identically satisfied by
the expansions of u, v, w and w0. Moreover, the continuity in y of all the displacement is satisfied. As
mentioned before Eq. (8d) is replaced with Nx ¼ 0; Eqs. (8b,d) are rewritten as follows [18] for x ¼ 0, L:

Mx ¼
Eh3

12ð1� n2Þ
ðkx þ nkyÞ ¼ 0, (11)

Nx ¼
Eh

1� n2
ðex;0 þ ney;0Þ ¼ 0. (12)

Eq. (11) is identically satisfied for the expressions of kx and ky given in Eqs. (2d,e).
Eq. (12) is not identically satisfied: according to Sanders–Koiter theory, see Eqs. (2a,b), and eliminating null

terms at the shell edges, Eq. (12) can be rewritten as

qû

qx
þ
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qu

R qy
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þ
1
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qw

qx
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þ
qw

qx

qw0

qx

" #
x¼0;L

¼ 0, (13)

where û is a term added to the expansion of u, given in Eq. (9a), in order to satisfy exactly the axial boundary
conditions Nx ¼ 0; its expression is reported in Appendix A.

It is worthwhile to stress that the present expansion does not satisfy the natural boundary condition (8d).

2.5. Fluid– structure interaction

The contained fluid is assumed to be incompressible and inviscid; these hypotheses turned out to be
adequate for vibrations of water-filled shells [21]. The shell pre-stress due to the fluid weight is neglected; in the
cases numerically investigated this pre-stress is extremely small. The nonlinear effects in the dynamic pressure
and in the boundary conditions at the fluid–structure interface are also neglected. These nonlinear effects have
been found to be negligible by Gonc-alves and Batista [22] and Lakis and Laveau [23]; in fact, the amplitude of
shell displacements remains small enough for linear fluid mechanics to be adequate.
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In order to include the fluid effect in the Sanders–Koiter equations one should evaluate the energy
contribution. Only kinetic energy TF is associated to inviscid still fluid; by using the Green’s theorem, this is
given by

TF ¼
1

2
rF

Z 2p

0

Z L

0

ðFÞr¼R _w dx R dy, (14)

where F is the velocity potential which is obtained in Appendix B.

2.6. Sanders– Koiter theory: Lagrange equations

The nonconservative damping forces are assumed to be of viscous type and are taken into account by using
the Rayleigh’s dissipation function

F ¼
1

2
c

Z 2p

0

Z L

0

ð _u2 þ _v2 þ _w2Þ dx R dy, (15)

where c has a different value for each term of the mode expansion. Simple calculations give

F ¼
1

2
ðL=2ÞR

XN

n¼0

XM
m¼1

cn½cm;n;cð _u
2
m;n;c þ _v

2
m;n;c þ _w2

m;n;cÞ þ cm;n;sð _u
2
m;n;s þ _v

2
m;n;s þ _w2

m;n;sÞ�; (16)

where

cn ¼
2p if n ¼ 0;

p if n40:

�
(17)

The damping coefficient cm,n,c or s is related to modal damping ratio, that can be evaluated from experiments,
by zm;n;c or s ¼ cm;n;c or s=ð2mm;nom;nÞ, where om;n is the natural circular frequency of mode (m, n) and mm,n is the
modal mass of this mode, given by mm;n ¼ cnðrS þ rV ÞhðL=2ÞR, and the virtual mass due to contained fluid is

rV ¼
rF

lmh

InðlmRÞ

I 0nðlmRÞ
. (18)

The total kinetic energy of the system is

T ¼ TS þ TF . (19)

The potential energy of the system is only the elastic strain energy of the shell

U ¼ US. (20)

In presence of axial loads acting on the shell, additional virtual work is done by the external forces. Let us
consider a time-dependent axial load ~PðtÞ ¼ �Pþ PD cosot (expressed in Newton) uniformly distributed on
the shell ends; ~PðtÞ is applied at both the shell ends; ~PðtÞ is positive in the x direction. In particular � ~PðtÞ is
applied at x ¼ 0 and ~PðtÞ is applied at x ¼ L. The axial distributed force qx has the following expression

qx ¼
~PðtÞ

2pR
½�dðxÞ þ dðx� LÞ�, (21)

where d is the Dirac function. The virtual work done by the axial load is

W ¼

Z 2p

0

Z L

0

~PðtÞ

2pR
½�dðxÞ þ dðx� LÞ�u dxR dy ¼ �2 ~PðtÞ

XMu2

m¼1

um;0ðtÞ. (22)

The following notation is introduced for brevity

q ¼ um;n;c; um;n;s; vm;n;c; vm;n;s;wm;n;c;wm;n;s

� �T
. (23)

The generic element of the time-dependent vector q is referred to as qj; the dimension of q is dofs, which is
the number of degrees of freedom used in the mode expansion.
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The generalized forces Qj are obtained by differentiation of the Rayleigh’s dissipation function and of the
virtual work done by external forces

Qj ¼ �
qF

q _qj

þ
qW

qqj

¼ �cm;n;i;j;c=s _qj þ
0 if qj ¼ um;n;c=s with na0; vm;n;c=s or wm;n;c=s;

�2 ~PðtÞ if qj ¼ um;0;

(
(24)

where the subscript c/s indicates c or s. In numerical calculations ~f will be set equal to zero and only axial
excitation will be considered.

The Lagrange equations of motion for the fluid-filled shell are

d

dt

qT

q _qj

 !
�

qT

qqj

þ
qU

qqj

¼ Qj ; j ¼ 1; . . . ;dofs; (25)

where qT=qqj ¼ 0. These second-order equations have very long expressions containing quadratic and cubic
nonlinear terms. In particular,

d

dt

qT

q _qj

 !
¼

rShðL=2ÞcnR €qj if qj ¼ um;n;c=s or vm;n;c=s;

ðrS þ rvÞhðL=2ÞcnR €qj if qj ¼ wm;n;c=s;

(
(26)

which shows that no inertial coupling among the Lagrange equations exists for the shell with simply supported
edges with the mode expansion used.

The very complicated term giving quadratic and cubic nonlinearities can be written in the form

qU

qqj

¼
Xdofs
k¼1

qk f k; j þ
Xdofs
i;k¼1

qiqk f i;k; j þ
Xdofs

i;k;l¼1

qiqkql f i;k;l; j ; (27)

where coefficients f have long expressions that include also geometric imperfections.
3. Donnell’s nonlinear shallow shell theory

A system of cylindrical coordinate is considered and u, v, w are the longitudinal, circumferential and radial
displacements respectively, but in this case w is positive inwards; w0(x, y) is the geometric imperfection of the
circular cylindrical shell associated with zero initial stress, is also taken positive inwards.

Considering the Donnell’s nonlinear shallow shell theory, including geometric imperfections, the equation
of motion is [21]

Dr4wþ ch _wþ rSh €w�
1

R

q2F
qx2

�
1

R2

q2F

qy2
q2w

qx2
þ

q2w0

qx2

� �
� 2

qF

qxqy
q2w

qxqy
þ

q2w0

qxqy

� �
þ

q2F
qx2

q2w

qy2
þ

q2w0

qy2

� �� 	
� f ¼ 0, ð28Þ

with the compatibility equation

r4F

Eh
þ

1

R

q2w
qx2
þ

1

R2
�

qw

qxqy

� �2

� 2
q2w
qxqy

q2w0

qxqy
þ

q2w
qx2
þ

q2w0

qx2

� �
q2w

qy2
þ

q2w
qx2

q2w0

qy2

" #
¼ 0, (29)

where D ¼ Eh3=½12ð1� n2Þ� is the flexural stiffness, c the damping coefficient and F is the in-plane stress
function, f is a distributed external load that is assumed equal to zero in the present study. In Eqs. (28) and
(29) the biharmonic operator is defined as r4 ¼ ½q2=qx2 þ q2=ðR2qy2Þ�2. In the Donnell’s nonlinear shallow
shell theory the in-plane inertia is neglected. The forces per unit length in the axial and circumferential
directions, as well as the shear force, are given in Refs. [24–27], see Appendix C for details.



ARTICLE IN PRESS
F. Pellicano, M. Amabili / Journal of Sound and Vibration 293 (2006) 227–252 235
3.1. Nonlinear Donnell’s shallow shell theory: Galerkin expansion

The discretization procedure used in the present paper is fully explained in Ref. [10]; here a brief description
is given; the shell radial displacement is expanded as

wðx; y; tÞ ¼
XM1

n¼1

XN1

m¼1

½wm;n;cðtÞ cosðnyÞ þ wm;n;sðtÞ sinðnyÞ� sinðlmxÞ þ
XM
m¼1

w2m�1;0ðtÞ sinðl2m�1xÞ, (30)

where lm ¼ mp=L, m is the number of axial half-waves, n is the number of circumferential waves, t is the time,
wm;n;cðtÞ, wm;n;sðtÞ, w2m�1;0ðtÞ are the generalized coordinates, which are unknown functions of t.

The general expansion (30) is reduced to a 11 degrees of freedom (dof) model having: 6 asymmetric modes
and 5 axisymmetric modes. The choice of this model is made after a deep convergence analysis of the static
and dynamic behavior of the shell [10,14]. The fundamental mode of the shell analyzed in this work is (1, n). In
Ref. [14] the following expansion showed good accuracy:

w ¼ w1;n;cðtÞ sinðZÞ cosðnyÞ þ w1;n;sðtÞ sinðZÞ sinðnyÞ þ w3;n;cðtÞ sinð3ZÞ cosðnyÞ

þ w3;n;sðtÞ sinð3ZÞ sinðnyÞ þ w1;2n;cðtÞ sinðZÞ cosð2nyÞ þ w1;2n;sðtÞ sinðZÞ sinð2nyÞ

þ w1;0ðtÞ sinðZÞ þ w3;0ðtÞ sinð3ZÞ þ w5;0ðtÞ sinð5ZÞ þ w7;0ðtÞ sinð7ZÞ

þ w9;0ðtÞ sinð9ZÞ, ð31Þ

where Z ¼ px=L and Am,n(t), Bm,n(t) and Am,0(t) are the generalized coordinates.
Geometric imperfections having the same shape of the modes included in the expansion of the radial

displacement are introduced. In particular, the following ‘‘modal’’’ imperfections are considered:

w0 ¼ w
ð0Þ
1;n;c sinðZÞ sinðnyÞ þ w

ð0Þ
3;n;c sinð3ZÞ sinðnyÞ þ w

ð0Þ
1;2n;c sinðZÞ sinð2nyÞ þ w

ð0Þ
1;0 sinðZÞ þ w

ð0Þ
3;0 sinð3ZÞ, (32)

where wð0Þm;n;c and w
ð0Þ
m;0 are the modal imperfection amplitudes.

The expansion introduced for the radial displacement w satisfies identically the boundary conditions and the
continuity of the circumferential displacement v. The boundary conditions for the in-plane displacements are
satisfied on the average [10,21]. When the expansion of w and w0 are substituted in the right-hand side of
Eq. (28), a PDE for the stress function F is obtained. The solution may be written as F ¼ F h þ Fp where Fh is
the homogeneous solution and Fp is the particular solution [14]. See Appendix C for details.

Using Donnell’s nonlinear shallow shell theory, the natural frequencies depending on the axial load [18,28]
are given by

o2
m;nðPÞ ¼ o2

m;n;0 1�
P

Pcr

� �
, (33a)

o2
m;n;0 ¼ o2

m;nðP ¼ 0Þ ¼
E

R2rS

ðmpR=LÞ4

ððmpR=LÞ2 þ n2Þ
2
þ
ðh=RÞ2

12ð1� n2Þ
mpR

L

� �2

þ n2

" #28<
:

9=
;. (33b)

4. Numerical results

In this section a benchmark problem, widely studied in the past [10,29,30], has been considered; this
benchmark shell has the following characteristics: h ¼ 2� 10�3m, R ¼ 0.2m, L ¼ 0.4m, E ¼ 2.1� 1011N/m2,
n ¼ 0.3, rS ¼ 7850 kg/m3. For such a shell the classical buckling theory [17] predicts the following classical
buckling load Pcl ¼ 2pR� 2.54� 106N.

In using the Sanders–Koiter theory, several mode expansions have been considered, in order to perform a
convergence analysis:
�
 Model A, 25 dof, does not include conjugate sine ‘‘modes’’ (only um,j,c, vm,j,c and wm,j,c, are considered); in
particular, the following modes are present: asymmetric modes (1, n), (1, 2n), (3,n), (3, 2n), (1, 3n) for u, v

and w; axisymmetric modes (1, 0), (3, 0), (5, 0), (7, 0), (9, 0) for u and w.
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�

Fig

No
Model B, 22 dof, does not include conjugate modes; in particular, the following modes are present:
asymmetric modes (1, n), (1, 2n), (3, n) for u, and w and (1, n), (1, 2n), (3, n), (3, 2n), (9, n), (1, 4n) for v;
modes (1, 0), (3, 0), (5, 0), (7, 0), (9, 0) for u and w.

�
 Model C, 30 dof, includes conjugate modes, (um,j,c, um,j,s), (vm,j,c, vm,j,s) and (wm,j,c, wm,j,s), are all considered.

In particular, the following modes are present: asymmetric modes (1, n), (1, 2n), (3,n) for u, and w and (1, n),
(1, 2n), (3,n), (3, 2n) for v; axisymmetric modes (1, 0), (3, 0), (5, 0), (7, 0), (9, 0) for u and w.

�
 Model D, 20 dof, the same of model C, but conjugate forms are not considered (only um,j,c, vm,j,c and wm,j,c,

are present).
Where not specified, results have been obtained with the Sanders–Koiter shell theory.

4.1. Static bifurcation

The first analysis is concerned with the static stability analysis of the compressed shell. When the perfect
shell is compressed, it undergoes to a small amplitude axial-symmetric deformation, see e.g. Fig. 2, which has
been obtained by using the linearized Donnell’s shallow shell equations for P=Pcl ¼ 0:4. The pre-buckling
deformation of a perfect circular cylindrical shell is axisymmetric and the amplitude of asymmetric modes is
zero, an edge effect is visible also. The buckling mode considered in the present analysis is (1, 5).

Increasing the axial load, the shell loses stability: using model B one finds that beyond P=Pcl ¼ 0:947 the
shell loses stability; this load is the actual critical load, also called bifurcation load. Results presented in Fig. 3
have been obtained by means of the continuation software AUTO [15]. At the bifurcation point,
P=Pcl ¼ 0:947, two new solutions, bifurcated branches, are found; these branches are initially unstable and
sub-critical, moreover the displacement field is given by asymmetric and axisymmetric modes. In order to
follow these solutions, the axial load must be reduced up to the ‘‘folding’’ P=Pcl ¼ 0:311. It should be noted
that the upper branch presents an amplitude smaller than the lower branch; indeed, it is well known that
circular cylindrical shells are stiffer outward than inward. In Fig. 3, dotted lines represent the solution
obtained by Gonc-alves and Del Prado [11]: they obtained bifurcation at P=Pcl ¼ 1 because they neglected the
pre-buckling effect; the post-critical behaviour is in good agreement, except for high amplitudes, in such case
the theory used in Ref. [11] is less accurate. Pellicano and Amabili [10] obtained the buckling load using
Donnell’s nonlinear shallow shell theory at P=Pcl ¼ 0:95 and folding at P=Pcl ¼ 0:2. Using the model A,
having more degrees of freedom, we obtain the critical load P=Pcl ¼ 0:949 and the folding at P=Pcl ¼ 0:316,
i.e. almost the same results obtained with model B.

Such results show that even if the compression load is much smaller than the critical load, the shell could
collapse; indeed, between P ¼ 30% and 95% Pcl there are three stable equilibrium positions and 2 unstable
one. The ‘‘unperturbed’’ equilibrium position is represented by a small amplitude axial symmetric
. 2. Pre-buckling effect on a perfect shell: axial symmetric deformation; P=Pcl ¼ 0:4. (a) 3D representation; (b) longitudinal section.

rmalized amplitude with respect to the shell thickness h; Donnell’s shallow shell theory.
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Fig. 3. Shell buckling: non-dimensional displacement of mid-point (x ¼ L=2, y ¼ 0). Comparison between Ref. [11] (– –) and the present

theory, Model B, (—) stable solution, (—) unstable solution.

Table 1

Convergence test

Modes eliminated from Model A Pcr/Pcl Pfold/Pcl

— 0.9497 0.3158

(1, 3n) 0.9497 0.2993

(3, 2n) 0.9497 0.6075

(3, n) 0.9621 0.563

(1, 3n) on u, v, w and (3, 2n) on u, w 0.9496 0.3106
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deformation; its basin of attraction is reduced as P approaches Pcl and a perturbation can cause a jump to one
of the buckled positions, i.e. the collapse of the shell.

A convergence test is performed starting from the 25 dof model A; then, several modes are eliminated from
the model A. In Table 1 results of the convergence test are summarized: mode ð1; 3nÞ, n ¼ 5, can be eliminated
without loss of accuracy; mode ð3; nÞ cannot be eliminated; mode ð3; 2nÞ can be eliminated from the expansion
of u and w only. The result of such convergence analysis is that models C and D can be used without loss of
accuracy.

Geometrical imperfections are considered in the static buckling behaviour presented in Fig. 4, where the
bifurcation path is presented for several imperfection amplitudes. The imperfection is given on asymmetric
mode (1,5) with positive value; the pitchfork bifurcation is immediately destroyed by the imperfection and is
replaced by a folding (saddle node bifurcation); indeed, in Fig. 4 one can see that the imperfect shell exhibits a
continuous deformation path. The picture is similar to that obtained in Ref. [10], but the amplitude is smaller
because in this case we plot the outward deflection, positive part of Fig. 3; conversely in Ref. [10] the inward
deflection was considered, obtained with the simpler Donnell’s nonlinear shallow shell theory.

The effect of imperfections consists in a large reduction of the ‘‘critical load’’, which is identified by the
folding point having the largest load (pre-buckling); the other folding is only slightly moved to the left hand by
imperfections. In Table 2 the effect of asymmetric and axial symmetric imperfections is summarized.

4.2. Dynamic analysis: empty shell

In this section a periodic time varying axial load is considered; such kind of excitation gives rise to a direct
excitation of the axisymmetric generalized coordinate um,0 according to Sanders–Koiter theory.
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Fig. 4. Shell buckling: effect of geometric imperfections on mode w
ð0Þ
1;5;c (Model A). Imperfection amplitude: 100% � h.

Table 2

Static buckling: effect of imperfections on modes (1,5) and (1,0). Results obtained with Sanders–Koiter theory if not differently specified

w
ð0Þ
1;5;c=h w

ð0Þ
1;0=h Pcr/Pcl Pfold/Pcl

0 0 0.95 (Donnell) 0.2 (Donnell)

0 0 0.949 0.316

0.1 0 0.805 0.312

0.2 0 0.727 0.308

0.3 0 0.666 0.304

0.4 0 0.615 0.300

0.5 0 0.56 0.297

1 0 0.405 0.276

0 0.2 1.038 0.326

0 0.4 1.135 0.338

F. Pellicano, M. Amabili / Journal of Sound and Vibration 293 (2006) 227–252238
Here we are mainly interested to large amplitude of vibration due to period-doubling instability of
asymmetric modes. When the excitation frequency is close to twice the linear frequency of a shell mode, a
dynamic Mathieu-type instability can take place; the shell vibration is sub-harmonic and the amplitude can be
quite large.

A first analysis is performed, using Model A, on a perfect shell by considering a purely harmonic axial load
of increasing magnitude, i.e. no static preload is present: o=o1;5ð0Þ ¼ 1:9 (o1;5ð0Þ ¼ 2p484:22 rad=s is the
fundamental frequency of the shell without initial compression using Sanders theory and o1;5ð0Þ ¼

2p503:7 rad=s using Donnell’s shallow shell theory), P ¼ 0, modal damping ratio z ¼ 0:089 on all modes;
the dynamic axial load PD is increased starting from zero excitation up to the onset of instability. Periodic
solutions, their stability and bifurcations are studied by means of continuation techniques [15]. When the
amplitude of excitation is small, the shell vibrates axial symmetrically with small amplitude and the response is
periodic; see Fig. 5. When PD=Pcl ¼ 0:424, a Period Doubling (PD) bifurcation is found; increasing the
dynamic load the solution becomes unstable. From the bifurcation point a new solution takes place; it is
slightly sub-critical and initially unstable. This response is no more axial symmetric, and both asymmetric and
axisymmetric modes are excited. Note that an amplitude of oscillation of order of h means the acceleration
a ¼ o2h (o ¼ 2p484:22 rad=s), which is about 1900 g!

In Fig. 5 a comparison among solutions obtained by Donnell’s nonlinear shallow shell theory and model A
(Sanders–Koiter) is shown; Donnell’s nonlinear shallow shell theory underestimates the axial symmetric
vibration; see Fig. 5(b). However, the bifurcation point is estimated very close to the Sanders–Koiter theory:
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Fig. 5. Dynamic instability. ‘‘—’’ present analysis (Sanders–Koiter), ‘‘– –’’ Ref. [10] (Donnell’s theory). Thick line: stable, thin line:

unstable. (a) Amplitude of asymmetric mode (1,5); (b) axisymmetric mode (1,0); (PD) period-doubling bifurcation. P ¼ 0, o=o1;5ð0Þ ¼ 1:9,
z ¼ 0:089.

Table 3

Dynamic critical load giving rise to period-doubling instability: present analysis (Sanders–Koiter, Model A); Refs. [10,13] (nonlinear

Donnell’s shallow shell theory); Ref. [13] (nonlinear Donnell’s shallow shell theory with in-plane inertia). P ¼ 0, z ¼ 0:089

o/o1,5(0) PDcr /Pcl

Sanders–Koiter

(present analysis,

Model A)

PDcr /Pcl Donnell’s

nonlinear shallow shell

[10]

PDcr /Pcl Donnell’s

nonlinear shallow shell

[13]

PDcr /Pcl Donnell’s

nonlinear shallow shell

[13] (with in-plane

inertia)

1.9 0.424 0.448 0.473 0.439

2 0.387 0.416 0.434 0.4
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PD=Pcl ¼ 0:448; the post-critical behaviour is in good agreement. The bifurcated branch obtained with
Donnell’s nonlinear shallow shell theory loses stability at PD=Pcl ¼ 0:49, because of a bifurcation; from this
point a new branch including the companion mode participation can take place. Such instability is not found
using model A, because companion mode is not included.

A similar analysis is also performed for excitation frequency o=o1;5ð0Þ ¼ 2; the smallest dynamic load, here
called dynamic critical load PDcr, that gives rise to parametric instability is now PDcr=Pcl ¼ 0:387; also in this
case Donnell’s nonlinear shallow shell theory over-estimates the critical load (PDcr=Pcl ¼ 0:416), but the results
are in good agreement.

Results about the critical dynamic load are summarized in Table 3; the Sanders–Koiter theory (present
analysis) and the Donnell’s nonlinear shallow shell theory [10,13] are compared. In Table 3 recent analyses,
carried out by Jansen [13] using a reduced model, are presented; such results confirm the good quality of
Donnell’s theory. Moreover, such comparison confirms Jansen’s comments: including in-plane inertia shows a
moderate decrease of the dynamic critical load.

A further comparison is performed on a perfect shell by considering a small damping ratio z ¼ 0:0008 and a
constant dynamic excitation amplitude PD=Pcl ¼ 0:01; the excitation frequency is now varied. In Fig. 6 a
comparison between Donnell’s nonlinear shallow shell theory and the present theory (models A and D) is
shown. When o/o1,5 is close to 2, two PD bifurcations are found by all models, and a very good agreement is
found. From the bifurcation points two 2T subharmonic branches (response having a period twice the
excitation period) appear and the post-critical behaviour is now strongly sub-critical (softening); for higher
amplitudes of oscillations Sanders–Koiter theory predicts a change in the response behaviour, which becomes
hardening. This behaviour is not predicted by the less-accurate Donnell’s nonlinear shallow shell theory. It
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Fig. 6. Dynamic instability. ‘‘—’’ present analysis, ‘‘– –’’ Ref. [10]. Thick line stable solution; thin line unstable solution; (PD) period-

doubling. P ¼ 0, PD=Pcl ¼ 0:01, z ¼ 0:0008.
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should be noted that model D does not agree properly with model A for high amplitudes of oscillation; this is
due to the series truncation, which induces modelling errors in the nonlinear vibration.

The effect of geometric imperfections is now considered: w
ð0Þ
1;5;c=h ¼ 0:1, w

ð0Þ
1;0=h ¼ 0:1; the fundamental

frequency is 484.22Hz for the perfect shell and 479.82Hz for the shell with such geometric imperfections; the
principal parametric instability is found for o=o1;5ð0Þ ¼ 1:98181 (o1;5ð0Þ is the natural frequency of the perfect
shell without preload), that means o=o1;5 ¼ 2.

Simulations are performed using Model A with imperfections and o=o1;5ð0Þ ¼ 1:98181, model A and
Donnell’s nonlinear shallow shell theory without imperfections and o=o1;5ð0Þ ¼ 2 (in this case o1;5ð0Þ ¼ o1;5

because no imperfections nor static preload are present); the damping ratio is z ¼ 0:0008. In Fig. 7 the first
asymmetric mode amplitude is represented versus the excitation amplitude. Before the bifurcation the
amplitude is zero, but the shell is vibrating axial symmetrically, similarly to the case shown in Fig. 5; here, for
the sake of brevity, the behaviour of axisymmetric modes is not reported. Donnell’s nonlinear shallow shell
theory predicts instability for PD=Pcl ¼ 0:0038, model A (perfect shell) find PD=Pcl ¼ 0:0035 and model A
with imperfections find PD=Pcl ¼ 0:0033. Note that, with respect to Fig. 5, the ratio PD/Pcl is reduced about
100 times, due to the reduction of damping.

Such simulations show a good agreement among theories, i.e. the simpler Donnell’s nonlinear shallow shell
theory is sufficiently accurate, even though the in-plane inertia is neglected. Moreover, simulations show that
the instability onset is not very sensitive to small geometric imperfections.

In Table 4 the effect of different geometric imperfections on the dynamic critical load PDcr is summarized:
the general comment is that geometric imperfections are not quite effective on the period-doubling instability;
the only case where the influence is evident regards a relatively large imperfection (50% h) that gives rise to a
large increase of the critical dynamic load, which is mainly due to axial symmetric outward imperfections, that
make the shell much stiffer, as shown in the first column by large increase of the natural frequency. Note that
no preload is present (P ¼ 0) in all these cases.

In order to clarify the effect of asymmetric imperfection, model C, including the companion mode, is used.
Only the imperfection on the fundamental mode is analyzed: the period-doubling instability seems to be
insensitive to this kind of imperfection and the use of the largest model including conjugate modes does not
change the behaviour, see Table 5.

Results presented in Tables 4 and 5 are obtained by means of a two-parameter continuation using the
software AUTO, which allows for finding the minimum dynamic load versus the excitation frequency. Similar
results have been obtained with a static preload P=Pcl ¼ 0:3 and 0.6, with or without companion mode, but
results are not presented here for the sake of brevity.
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Table 4

Dynamic buckling: effect of imperfections, model A (Sanders–Koiter); two-parameter continuation. P ¼ 0, z ¼ 0:0008

o1,5/o1,5(0) w
ð0Þ
1;5;c=h w

ð0Þ
1;15;c=h w

ð0Þ
3;5;c=h w

ð0Þ
1;0=h w

ð0Þ
3;0=h PDcr/Pcl

1 0 0 0 0 0 0.0038 (Donnell)

1 0 0 0 0 0 0.0035

0.99091 0.1 0 0 0.1 0.1 0.0033

1.02912 0.1 0.1 0.1 0.1 0.1 0.0036

0.99975 0.1 0 0 0 0 0.0035

0.99117 0 0 0 0.1 0.1 0.0033

1.03715 0.1 0.1 0.1 0 0 0.0038

1.7001 0.5 0.5 0.5 0.5 0.5 0.0077

1.04611 �0.1 �0.1 �0.1 �0.1 �0.1 0.004

1.00975 0 0 0 �0.1 �0.1 0.0037

Fig. 7. Dynamic instability: model A, perfect (— � —) and imperfect (—) shell; Donnell’s theory (— —). Imperfection amplitude:

w
ð0Þ
1;5;c=h ¼ w

ð0Þ
1;0=h ¼ w

ð0Þ
3;0=h ¼ 0:1. (PD) Period doubling bifurcation; thick line ‘stable’; thin line ‘unstable’. P ¼ 0, o=o1;5 ¼ 2, z ¼ 0:0008.
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In Fig. 8 the principal instability region is presented for z ¼ 0:0008 and P=Pcl ¼ 0: regions obtained with
Donnell’s nonlinear shallow shell and Sanders–Koiter theories are very close. Geometric imperfection
(w
ð0Þ
1;5;c=h ¼ 0:15) gives a translation of the instability boundary, without changing the minimum value of PDcr.
A general conclusion is that small geometric imperfections, that give strong effects on the static buckling,

are not effective on the parametric instability onset; Fig. 8. Similarly, the post-critical dynamic behaviour is
not influenced by geometric imperfections; Fig. 7. Of course, the strong modification of the static post-critical
path, should modify the dynamic properties; therefore the influence of initial imperfections on the post-critical
dynamic behaviour and the escape from the potential well, in the case of high pre-compression, should be
accurately investigated, such analysis is beyond the purposes of the present work.

4.3. Complex dynamics of empty shell with geometric imperfection

In this section the whole scenario of the shell dynamics is analyzed in the case of large axial preload, i.e.
when the axial load is larger than the lower folding value, but lower than the critical value. In such case a jump
to the buckled position is possible, and complex dynamics can take place. Geometric imperfection with
w
ð0Þ
1;5;c ¼ 0:15 h is assumed.
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Table 5

Dynamic buckling: effect of imperfections, model C (Sanders–Koiter, companion mode included); two-parameter continuation. P ¼ 0,

z ¼ 0:0008

o1,5(0) w
ð0Þ
1;5;c=h PDcr/Pcl

1 0 0.0035

0.99978 0.1 0.0036

0.99912 0.2 0.0036

0.99802 0.3 0.0036

0.99651 0.4 0.0037

0.99458 0.5 0.0037

Fig. 8. Principal instability region: comparison of theories and effect of imperfections: (a) whole scenario; (b) enlarged view. P ¼ 0,

z ¼ 0:0008.

F. Pellicano, M. Amabili / Journal of Sound and Vibration 293 (2006) 227–252242
The bifurcation diagram is obtained by means of direct simulation using an adaptive step size Gear
algorithm (Divpag of IMSL). The time history is sampled with the frequency of excitation in order to obtain
Poincaré maps; the procedure is repeated by changing the control parameter, i.e. the excitation frequency,
starting from o=o1;5ð0Þ ¼ 1:3 and decreasing it up to 0.9. Each step of the bifurcation diagram is obtained after
computing 2000 times the excitation period, in order to eliminate transient response, and recording 200
samples. It is to note that when a static preload is applied, the linear natural frequencies decrease as indicated
by Eqs. (33a,b).

In Fig. 9 the bifurcation diagram is presented: a single line means periodic response; two points for each
frequency indicate a 2T sub-harmonic response; more complex cases must be investigated deeply by analyzing
2D representations of Poincaré maps, time histories and spectra. By reducing the excitation frequency the
period-doubling bifurcation is met for o=o1;5ð0Þ ¼ 1:235; in the region o=o1;5ð0Þ 2 ð1:121; 1:125Þ an amplitude
modulation takes place. For o=o1;5ð0Þo1:093 there is a complex region where 2T periodic orbits, amplitude
modulations and chaotic orbits are present; moreover, at o=o1;5ð0Þ ¼ 1:046 a jump to the buckled position
leads the shell to the collapse.

The chaotic dynamics appearing in the neighbourhood of o=o1;5ð0Þ ¼ 1:05 is now analyzed in detail. A
simulation is carried out by using data obtained from the bifurcation diagram as initial condition, in order to
avoid the transient response (bifurcation diagrams are obtained after eliminating 2000 periods of excitation).
In Fig. 10 time histories and spectra show that an irregular motion having a wide band spectrum is obtained.
The spectral energy of asymmetric modes is mainly around O=o1;5ð0Þ ¼ o=ðo1;5ð0Þ � 2Þ (O is the frequency
variable in the Fourier domain), i.e. the response is mainly one half sub-harmonic. Conversely, the first
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Fig. 10. System response, model C: w
ð0Þ
1;5;c=h ¼ 0:15, P=Pcl ¼ 0:6, PD=Pcl ¼ 0:04, o=o1;5ð0Þ ¼ 1:05, z ¼ 0:0008. (a) Time response of

w1;5;cðtÞ=h; (b) time response of w1;5;sðtÞ=h; (c) time response of w1;0ðtÞ=h; (d) spectrum of w1;5;cðtÞ=h; (e) spectrum of w1;5;sðtÞ=h; (f) spectrum

of w1;0ðtÞ=h.

Fig. 9. Bifurcation diagrams (decreasing frequency), model C, w
ð0Þ
1;5;c=h ¼ 0:15, P=Pcl ¼ 0:6, PD=Pcl ¼ 0:04, z ¼ 0:0008. 3D representation

of the two conjugate modes (1,5). ‘PD’ period doubling bifurcation; ‘2T’ one-half sub-harmonic response; ‘M’ amplitude modulation; ‘C’

chaotic response.
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axisymmetric mode has the main energy spectrum close to the excitation frequency. Poincaré maps, Fig. 11,
confirm the chaotic character of the dynamics.

The chaotic regime has been investigated by using nonlinear time series techniques [16]. Starting from the
modal response, the time history of the transversal displacement of a point in the middle of the shell is
obtained, simulating an actual point measurement. The time history is sampled with sampling rate
Dt� o1;5ð0Þ ¼ 0:1995. By analyzing the correlation function, a first minimum is found for t ¼ 15� Dt; such
time delay is used to create embedding coordinates [16]. Let us suppose that the time history wðx̂; ŷ; tÞ is
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Fig. 11. Poincaré maps, model C, w
ð0Þ
1;5;c=h ¼ 0:15, P=Pcl ¼ 0:6, PD=Pcl ¼ 0:04, o=o1;5ð0Þ ¼ 1:05, z ¼ 0:0008. (a) Generalized coordinate

w1;5;c; (b) generalized coordinate w1;5;s.

Fig. 12. Correlation dimension, model C, w
ð0Þ
1;5;c=h ¼ 0:15, P=Pcl ¼ 0:6, PD=Pcl ¼ 0:04, o=o1;5ð0Þ ¼ 1:05, z ¼ 0:0008. (a) Slope of the

correlation integral versus the scale length; (b) correlation dimension versus the embedding dimension.
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sampled, the time series is: wi ¼ wðx̂; ŷ; i � DtÞ, where Dt is the sampling interval and i ¼ 1; . . . ;NT . A delay
coordinate vector can be defined as follows: vi ¼ fwi�ðM�1Þd ;wi�ðM�2Þd ; :::;wig, i ¼ ðM � 1Þ � d; . . . ;NT ; d � Dt

is called time delay, and M is the embedding dimension. The embedding theorem [30] states that if the time
series consist of scalar measurements of a dynamical system and M is large enough, then the time delay
embedding provides a one-to-one image of the original phase space.

The Grassberger Procaccia [30,31] algorithm is applied to evaluate the correlation dimension from a time
history of 105 samples by using a Thailer window equal to 1500�Dt to eliminate spuriously correlated pairs.
An estimation of the correlation dimension equal to 3.5 has been obtained, as shown in Fig. 12. This result
shows that the dynamics is high dimensional and the attractor set is fractal, i.e. chaotic.

The maximum Lyapunov exponent is evaluated using an algorithm based on the work of Rosenstein et al.
[32]. Basically the algorithm consists in considering two different but very close states of the system in the
embedding space: vn0 and vn; the distance of these vectors is D0 ¼ vn � vn0 . Note that no matter how close are vn0
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and vn in time. Such distance can be thought as a small perturbation of an initial condition. Therefore one can
follow the time evolution of the distance between two trajectories by writing: Dr ¼ vnþr � vn0þr; if jDrj � jD0je

lt

than l is the maximum Lyapunov exponent. Details of the algorithm used in the present paper can be found in
Ref. [32]. From the time history analysis, the quantity S ¼ lt is estimated versus: the time, the embedding
dimension and the scale factor that is related to the initial distance. The slope of S gives the maximum
Lyapunov exponent with a good accuracy, if the analysis is repeated for several values of the perturbation and
the embedding dimension. The maximum Lyapunov exponent is equal to Dt� 0.013, see Fig. 13, which
confirms the chaoticity of the response. Finally, using the algorithm developed in Ref. [33], the Lyapunov
spectrum is estimated and two positive exponents are found. Moreover, the ‘‘Kaplan–Yorke’’ K–Y dimension
[34], which is strictly related to the correlation dimension, is estimated to be 3.7; such estimation is in
agreement with the correlation dimension estimation.

The dimension Dp of a phase space able to contain a certain attractor must be in the interval
½dc�pDpp2� ½dc� þ 1, where dc is the correlation dimension and [ � ] means the greatest integer [35,36].
Therefore in our case 4pDpp9, i.e. 2 up to 4 dof could be necessary to reproduce such motion.
Fig. 13. Slope of maximum Lyapunov exponent, model C, w
ð0Þ
1;5;c=h ¼ 0:15, P=Pcl ¼ 0:6, PD=Pcl ¼ 0:04, o=o1;5ð0Þ ¼ 1:05, z ¼ 0:0008.

Straight thick line: estimation of the actual slope.

Fig. 14. Poincaré maps, model C, w
ð0Þ
1;5;c=h ¼ 0:15, P=Pcl ¼ 0:6, PD=Pcl ¼ 0:04, o=o1;5ð0Þ ¼ 1:075, z ¼ 0:0008. (a) Projection on the

ð _w1;5;c;w1;5;cÞ-plane; (b) projection on the ð _w1;5;s;w1;5;sÞ-plane.
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The previously mentioned time-series analyses allow to conclude that a high dimensional chaotic motion is
found, where at least 4 modes participate to the dynamics: i.e. lower order model cannot be able to reproduce
such chaotic response.

Close to the chaotic orbit for o=o1;5ð0Þ ¼ 1:075 amplitude modulation motion is present. In Fig. 14 the
Poincaré maps represent clearly such dynamics. Similarly, for o=o1;5ð0Þ ¼ 1:123 amplitude modulation motion
is found, see Fig. 15, even though the attractor is completely changed.

4.4. Dynamic analysis: water-filled shell

In this section a water-filled shell (rF ¼ 1000 kg=m3) is considered. Similarly to the previous section, a
periodic time varying axial load is applied.

A first analysis is carried out on the linear dynamics: the linear natural frequencies are evaluated by using
both Sanders–Koiter theory (Model C) and Donnell’s nonlinear shallow shell theory. The fundamental mode
has 5 nodal diameters (m ¼ 1, n ¼ 5), similarly to the empty shell. The natural frequencies corresponding to
modes used in the displacement expansion of model C (Sanders–Koiter theory) are compared with those
obtained by Donnell’s nonlinear shallow shell theory in Table 6: the maximum error is found for the
fundamental mode (1,5), about 4%, and on the first axisymmetric mode (1,0), about 3%. Therefore, the linear
behaviour of the shell is simulated with good accuracy by the Donnell’s nonlinear shallow shell theory; also in
the case of axisymmetric modes, for the specific test case, such theory does not give wrong results, even though
it is well known in literature that such a theory should not be used for modes having no4.
Fig. 15. Poincaré maps, model C, w
ð0Þ
1;5;c=h ¼ 0:15, P=Pcl ¼ 0:6, PD=Pcl ¼ 0:04, o=o1;5ð0Þ ¼ 1:123, z ¼ 0:0008. (a) Projection on the

ð _w1;5;c;w1;5;cÞ-plane; (b) projection on the ð _w1;5;s;w1;5;sÞ-plane.

Table 6

Natural frequencies of the water-filled shell: comparison of theories

Mode Frequency (Hz) Sanders–Koiter Frequency (Hz) Donnell’s

shallow shell

Error %

1,5 260.75 271.26 4.03

1,10 838.75 851.55 1.53

3,5 1165.02 1185.09 1.72

1,0 1061.91 1091.26 2.76

3,0 2045.45 2049.77 0.21

5,0 2529.15 2531.03 0.07

7,0 2943.56 2944.68 0.04

9,0 3457.34 3458.12 0.02
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Fig. 16. Bifurcation diagrams, model C, water-filled shell, w
ð0Þ
1;5;c=h ¼ 0:15, P=Pcl ¼ 0:6, PD=Pcl ¼ 0:02, z ¼ 0:003. 3D representation of the

two conjugate modes (1,5). ‘M’ amplitude modulation.

Table 7

Critical dynamic buckling: effect of fluid and comparison theories. P=Pcl ¼ 0, damping ratio 0.089

o/o1,5(0) PDcr/Pcl (Sanders–Koiter) PDcr/Pcl (Donnell) Presence of water

2 0.704 0.722 Yes

2 0.387 0.416 No
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A further comparison between Sanders–Koiter (Model C) and Donnell’s nonlinear shallow shell theory is
carried out in the case of axial excitation. A two-parameter continuation is performed in order to follow the
dynamic instability bound (period-doubling bifurcation) when both frequency of excitation, o, and the
amplitude of the sinusoidal excitation, PD, are varied. The lowest value of PD which causes the parametric
instability is found always at o=o1;5ð0Þ ¼ 2; indeed, no pre-compression is exerted. Both Sanders–Koiter and
Donnell’s nonlinear shallow shell theories are in good agreement. In particular, both theories show that the
presence of fluid induces an increase of the critical dynamic load, see Table 7. In the present analysis such
safety effect is only due to the inertial effect of fluid; in fact, in the simulation the damping ratio was assumed
to be the same with respect to the empty shell.

Generally, the presence of fluid results in a moderate increment of damping; therefore, in actual situations
the dynamic critical load should increase even more.

In Fig. 16 the bifurcation diagram of the imperfect water-filled shell is presented for w
ð0Þ
1;5;c=h ¼ 0:15,

P=Pcl ¼ 0:6, PD=Pcl ¼ 0:02, damping ratio 0.3%: a single-value curve means periodic response. No chaotic
regimes are found, only amplitude modulations take place for o=o1;5ð0Þ 2 ð0:949; 0:962Þ and
o=o1;5ð0Þ 2 ð0:990; 0:997Þ. Moreover, at o=o1;5ð0Þ ¼ 0:892 a jump to the buckled position leads the shell to
the collapse.

In order to investigate the amplitude modulation regime, a direct simulation has been performed for
o=o1;5ð0Þ ¼ 0:955. Fig. 17 shows the Poincaré map projected on a three-dimensional space (w1,5,c, w1,5,s,
w1,10,c); such modal coordinates have been selected after analyzing time histories and classical 2D Poincaré
sections, e.g. ( _wi;j;c, wi,j,c): 2D sections are meaningless because they do not clarify whether the attractor is one
or two dimensional and the topology of the attractor. Therefore, several 3D projection have been carried out
in order to find the best representation of the attractor. From Fig. 17 one can argue that the attractor set is one
dimensional; however, it is wrapped up a 2D set that is topologically equivalent to a Torus. This means that
such a dynamics is more complex than the classical amplitude modulations and at least 3 dof should be
necessary to analyze such motion.
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Fig. 17. Poincaré map, model C, water-filled shell, 3D representation. w
ð0Þ
1;5;c=h ¼ 0:15, P=Pcl ¼ 0:6, PD=Pcl ¼ 0:02, o=o1;5ð0Þ ¼ 0:955,

z ¼ 0:003.
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5. Conclusions

In the present paper, Sanders–Koiter shell theory has been applied in order to model the dynamics of the
shell in presence of static and dynamic axial loads, geometric imperfections and fluid–structure interaction. A
multimode approach have been developed in order to reduce the initial PPE problem to ODE, by using
Lagrange equations. An accurate convergence test proved that the expansion used in the present work has
been suitably truncated.

The accuracy of the widely used Donnell’s nonlinear shallow shell theory have been tested, confirming that
such approximate theory is sufficiently accurate. Comparisons with literature are provided. Comparisons
among theories complete the investigation by Amabili [37] on nonlinear vibrations of shells under radial
excitation, where different nonlinear shell theories were used and compared.

It is confirmed that the presence of a contained fluid gives safety effects on the instability onset, which
appears through period-doubling bifurcation.

An accurate analysis of the effect of geometric imperfections on the dynamic instability onset and post-
critical behaviour is carried out. The circular cylindrical shell under investigation was not particularly sensitive
to small geometric imperfections, for which concern the instability onset.

The chaotic dynamics of pre-compressed shells is investigated in detail by means of nonlinear time-series
techniques, extracting correlation dimension and Lyapunov exponents. The minimal dimension of the chaotic
attractor has been evaluated through the K–Y dimension and correlation dimension estimators; results
indicate that a strange attractor having dimension 3.5–3.7 appears, this means that such dynamical behaviour
cannot be modelled by using low-dimensional models (e.g. 1 dof) the minimum number of dofs needed to
obtain ‘‘certainly’’ such a dynamics is four [35].
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Appendix A

A.1. In-plane boundary conditions

Eqs. (8) give the boundary conditions for a simply supported shell; indeed in the present theory the axial
load is included in the energy approach as virtual work. As a consequence that û is a second-order term in the
shell displacement, it has not been inserted in the second-order terms that involve u in Eq. (13).
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All the generalized coordinates, except the six ones associated to the resonant mode (m, n), which are
um;n;sðtÞ; vm;n;sðtÞ;wm;n;sðtÞ; um;n;sðtÞ; vm;n;sðtÞ;wm;n;sðtÞ, are neglected because they are an infinitesimal of higher
order. Calculations give [37]

ûðtÞ ¼ �
1

32
½aðtÞ þ bðtÞ cosð2nyÞ þ cðtÞ sinð2nyÞ� sinð2mpx=LÞ � ðmp=LÞ

� ½wm;n;cðtÞ cosðnyÞ þ wm;n;sðtÞ sinðnyÞ�
X~N
j¼0

X~M
i¼1

i

mþ i
½Ai; j cosðjyÞ þ Bi; j sinðjyÞ�

� sin½ðmþ iÞpx=L�, ðA:1Þ

where ~M is the largest between ~M1 and ~M2 and

aðtÞ ¼ ð4mp=LÞðw2
m;n;c þ w2

m;n;sÞ þ ð1þ nÞðmp=LÞðv2m;n;c þ v2m;n;sÞ

þ ð1þ nÞ½Ln2=ðmpR2Þ�ðu2
m;n;c þ u2

m;n;sÞ � 2ð1þ nÞðn=RÞðvm;n;sum;n;s � vm;n;cum;n;cÞ, ðA:2Þ

bðtÞ ¼ ð4mp=LÞðw2
m;n;c � w2

m;n;sÞ þ ð1þ nÞðmp=LÞðv2m;n;s � v2m;n;cÞ

þ ð1þ nÞ½Ln2=ðmpR2Þ�ðu2
m;n;s � u2

m;n;cÞ � 2ð1þ nÞðn=RÞðvm;n;sum;n;s þ vm;n;cum;n;cÞ, ðA:3Þ

cðtÞ ¼ ð8mp=LÞwm;n;cwm;n;s þ 2ð1þ nÞðmp=LÞvm;n;cvm;n;s � 2ð1þ nÞ½Ln2=ðmpR2Þ�um;n;cum;n;s

� 2ð1þ nÞðn=RÞðvm;n;cum;n;s � vm;n;sum;n;cÞ. ðA:4Þ

Appendix B

B.1. Fluid– structure interaction

The fluid motion is described by the velocity potential F, which satisfies the Laplace equation,

r2F ¼
q2F
qx2
þ

q2F
qr2
þ

1

r

qF
qr
þ

1

r2
q2F

qy2
¼ 0. (B.1)

The fluid velocity vector v is related to F by v ¼ �rF. No cavitation is assumed at the fluid–shell interface,

qF
qr

� �
r¼R

¼ � _w. (B.2)

Both ends of the fluid volume (in correspondence to the shell edges) are assumed to be open, so that a zero
pressure is assumed there,

ðFÞx¼0 ¼ ðFÞx¼L ¼ 0. (B.3)

A solution of Eq. (B.1) satisfying condition (B.3) is given by

F ¼
X1
m¼1

X1
n¼0

½amnðtÞ cosðnyÞ þ bmnðtÞ sinðnyÞ�½cmnInðlmrÞ þ dmnKnðlmrÞ� sinðlmxÞ, (B.4)

where In(r) and Kn(r) are the modified Bessel functions of the first and second kind, respectively, of order n and
lm ¼ mp=L. Eq. (B.4) must satisfy boundary condition (B.2) and F must be finite (regular) at r ¼ 0. By using
the assumed mode expansion of w, given by Eq. (9c), the solution of the boundary value problem for internal
fluid only is

F ¼ �
XM
m¼1

XN

n¼0

½ _wm;n;cðtÞ cosðnyÞ þ _wm;n;sðtÞ sinðnyÞ�
InðlmrÞ

lmI 0nðlmRÞ
sinðlmxÞ, (B.5)

where I 0nðrÞ is the derivative of In(r) with respect to its argument and M is the largest between Mw1 and Mw2,
which have been introduced in Eq. (9). Axisymmetric generalized coordinates are included with the subscript c
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for brevity. Therefore, the dynamic pressure p exerted by the contained fluid on the shell is given by

p ¼ rF ð
_FÞr¼R ¼ �rF

XM
m¼1

XN

n¼0

½ €wm;n;cðtÞ cosðnyÞ þ €wm;n;sðtÞ sinðnyÞ�
InðlmRÞ

lmI 0nðlmRÞ
sinðlmxÞ, (B.6)

where rF is the mass density of the internal fluid. Eq. (B.6) shows that the fluid has an inertial effect on radial
motion of the shell. In particular, the inertial effects are different for the asymmetric and the axisymmetric
terms of the mode expansion. Hence, the fluid is expected to change the nonlinear behaviour of the fluid-filled
shell. Usually the inertial effect of the fluid is larger for axisymmetric modes, thus enhancing the nonlinear
behaviour of the shell.

Appendix C

C.1. Donnell’s shallow shell theory: in-plane stresses and boundary conditions

Nx ¼
1

R2

q2F

qy2
; Ny ¼

q2F
qx2

; Nxy ¼ �
1

R

q2F

qxqy
. (C.1)

The force–displacement relationships are [21]

ð1� n2Þ
Nx

Eh
¼ �

nw

R
þ

1

2

qw

qx

� �2

þ
qw

qx

qw0

qx
þ

n
2

qw

Rqy

� �2

þ n
qw

Rqy
qw0

Rqy
þ

qu

qx
þ

n
R

qv

qy
, (C.2)

ð1� n2Þ
Ny

Eh
¼ �

w

R
þ

n
2

qw

qx

� �2

þ n
qw

qx

qw0

qx
þ

1

2

qw

Rqy

� �2

þ
qw

Rqy
qw0

Rqy
þ n

qu

qx
þ

1

R

qv

qy
, (C.3)

ð1� n2Þ
Nxy

Eh
¼ 2ð1� nÞ

1

R

qw

qx

qw

qy
þ

1

R

qw

qx

qw0

qy
þ

1

R

qw0

qx

qw

qy
þ

1

R

qu

qy
þ

qv

qx

� 	
. (C.4)

Considering a simply supported shell, the boundary conditions are

w ¼ w0 ¼ 0 for x ¼ 0;L, (C.5)

Mx ¼ �D
q2w
qx2
þ n

q2w

R2qy2

� �� 	
¼ 0 for x ¼ 0;L, (C.6)

q2w0

qx2
¼ 0; Nx ¼ ~NxðtÞ and v ¼ 0 for x ¼ 0;L. (C.7)

The external axial load is given by a constant compressive load –P (expressed in Newton) and a sinusoidal
time varying excitation having amplitude PD and angular frequency o

~NxðtÞ ¼ �
P

2pR
þ

PD

2pR
cosot, (C.8)

where ~NxðtÞ is a force per unit length [N/m].
The boundary conditions in Eqs. (C.5, C.6) are exactly satisfied by the expansion of the transversal

displacement w; such expansion respects exactly the continuity of circumferential displacement [10]:Z 2p

0

qv

qy
dy ¼

Z 2p

0

1

Eh

q2F
qx2
� n

q2F

R2qy2

� �
þ

w

R
�

1

2

qw

Rqy

� �2
" #

dy ¼ 0. (C.9)

The homogeneous part of the stress function satisfies the in-plane boundary conditions, Eq. (C.7), on the
average Z 2p

0

NxR dy ¼ 2pR ~NxðtÞ; (C.10a)
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Z 2p

0

Z L

0

NxyR dx dy ¼ 0: (C.10b)

Once the stress function is obtained, the classical Galerkin procedure is followed to project the governing
equation into the base considered. A nonlinear system of coupled differential equations is obtained.
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